Factorization tools¶
- spalor.matrix_tools.factorization_util.partXY(U, V, X)[source]¶
- returns a vector of a sparse set of entries of UV^T np.sum(np.multiply(U[X[0][:], :],V[X[1][:],:]), axis=1) :param U: :param V: :param X: (2,n) nparray of indices for the entries of UV^T needed :return: y (n,) nparray of entries of UV^T 
- spalor.matrix_tools.factorization_util.svd_from_factorization(U, V)[source]¶
- Orthonormalizes U and V to obtain the singular decomposition of UV^T - Parameters
- U – (d1,r) numpy array 
- V – (d2,r) numpy array 
 
- Returns
- (U,Sigma,V) - the singular value decomposition of UV^T 
 
- spalor.matrix_tools.factorization_util.svd_low_rank_plus_sparse(U, Sigma, V, S, eps=1e-06, max_iter=100)[source]¶
- Uses power iteration method to find the truncated singular value decompositon of the rank-r approximation to the matrix U Sigma V^T +S efficiently - Parameters
- U – (d1,r) 
- Sigma – (r,r) 
- V – (d2,r) 
- S – sparse matrix (d1, d2) 
 
 - :return’